Last month the New York Times published an article about how the West is likely entering a prolonged period of water shortages. Similiar reports have recently been published in Australia detailing expected extended droughts over the next 50 years.

The USA and Australia have responded to these reports in different ways.

Several weeks ago I blogged about the current administration’s effort to push bulk water tranfers from Canada. This week Australia announced they were about to embark on a major desalination research project with the view of spending $250 million over seven years and cutting energy costs for desalination in half. Interestingly, their belief that such results are doable is based on recent research in the US. Further, they considered long distance bulk water transfers. They concluded, however, that doing the research to lower the cost of desalination was less expensive and complicated. And too, the ocean is a more reliable resource.  See my concluding remarks after the article posted below.

Thirsty Australia Advances Desalination Technology

MELBOURNE, Australia, May 18, 2007 (ENS) – The delivery of energy efficient water desalination to drought-stricken Australia received a boost today with the establishment of a new collaboration between the government research agency CSIRO and nine Australian universities.

The research aims to advance water desalination as an alternative water supply option for Australia by increasing efficiency, and reducing the financial and environmental costs of producing desalinated water.

Australia, especially southern Australia, is short of water, and the country is experiencing the worst drought on record this year. Desalination of seawater is a possible additional supply, but it requires a lot of electricity, and is expensive, costing about A$1.10 per 1,000 liters (US$.90 per 264 gallons).

The new research effort, known as the Advanced Membrane Technologies for Water Treatment Research Cluster, is led by Professor Stephen Gray of Victoria University.

As a first step, the multi-disciplinary research team will carry out an evaluation of existing membranes and develop new energy efficient membranes.

Professor Stephen Gray is director of the Institute of Sustainability and Innovation at Victoria University, where he is responsible for research, education and industry liaison in the water, energy and sustainable buildings sectors. (Photo courtesy ISI)

“Many desalination and recycling programs rely on a process called reverse osmosis, where the water is forced through a semi-permeable membrane, removing salts and any other contaminants,” Gray explains.”These membranes need regular replacement and cleaning, but they also require a large amount of energy to force water through what are nano-sized pores,” he says.

When contaminants such as salts are removed from water, some of them adhere to the surface of the membrane, building up on the surface, increasing the pressure and energy required to desalinate the water.

“Chemicals are used to clean the membranes, but membrane surfaces that are less sticky would reduce the pressure and energy required and the frequency of cleaning,” Gray says.

The researchers aim to improve membrane anti-fouling properties, increasing the ability of the membranes to clean themselves without chemicals.

The research will link with and inform related CSIRO research into membrane and carbon nanotube water filtration technologies.

Carbon nanotubes, molecules made of carbon atoms, are hollow and more than 50,000 times thinner than a human hair. Billions of these tubes serve as the pores in a desalination membrane.


Carbon nanotubes can be made in many different configurations. (Photo courtesy Softpedia)

The smooth inner walls of the nanotubes allow liquids and gases to rapidly flow through, while the miniscule pore size keeps out larger molecules.Alan Gregory, urban water research leader at CSIRO, says, “In combination with other research projects led by CSIRO, we aim to reduce by up to 50 percent the amount of energy required to desalinate seawater using membranes. This same technology will have benefits for the treatment and recycling of wastewater.”

CSIRO researchers are using nanotechnology to develop a new membranes for desalination with electrodialysis technology, which they say may lead to breakthrough technologies in cost-effective and highly efficient water recovery systems.

Nanotechnology for water desalination is a rapidly developing field. In the United States, researchers at Lawrence Livermore National Laboratory announced in May 2006 their creation of a membrane made of carbon nanotubes and silicon that may offer less expensive desalinization.

The CSIRO scientists are developing new “inorganic-organic nanocomposite membranes for desalination by electrodialysis membrane process, which involves the incorporation of oxide nanoparticles into ion-conducting polymers to form new nanocomposites.”

“This also means we could potentially provide more secure water supplies while minimizing greenhouse gas emissions,” said Gregory.

Other partners in the membrane research program are the University of New South Wales, Monash University, the University of Melbourne, RMIT University, Curtin University of Technology, the University of Queensland, Deakin University, and Murdoch University.

Funding for the research was announced by Minister for Education, Science and Training Julie Bishop under the Flagship Collaboration Fund.

Desalination membrane advances cannot come soon enough for Australia, which is opening giant desalination plants already based on existing membrane technology, even if the water they produce is costly.


The new Perth Seawater Desalination Plant, shown here under construction, is the largest desalination plant in the southern hemisphere. (Photo courtesy ABB)

In April, the Water Corporation of Western Australia opened the 45 gigaliter Perth Seawater Desalination Plant. The US$290 million project will guarantee 17 percent of Western Australia’s current water needs, regardless of rainfall or drought.On Tuesday Western Australia Premier Alan Carpenter announced that a second desalination plant of the same size would be built at Binningup.

Meanwhile, the New South Wales Government of Premier Morris Iemma is moving forward with a huge desalination plant south of Sydney at Kurnell. The plant will use reverse osmosis technology with membranes that remove salts and other impurities from seawater to produce drinking water.

The environmental assessment for the construction and operation of a pipeline for Sydney’s desalination plant is open for public comment to Monday May 28.

As part of the desalination project, an 18 kilometer pipeline will be constructed from Kurnell, across Botany Bay, to Erskineville.

Sydney Water Managing Director Kerry Schott said the Kurnell plant would be 100 percent powered by green energy and would guarantee Sydney’s water supply.

“Given the uncertainty of climate change and Sydney’s growing population, alternative sources of water need to be developed,” said Schott.

“The desalination plant will supply about seven percent of Sydney’s water supply by 2009 but it can be scaled up further if required,” he said. “This gives us a supply of water that does not depend on rainfall.”


I blogged last December about the LLNL scientists visit to Australia. Every provincial newspaper in Australia had a write up on that visit. This contrasts sharply with the notice that was given to the work of the LLNL scientists in the USA. Their write ups were mostly confined to science journals. Perhaps that’s why the Bush administration is actively considering bulk water transfers rather than accelerating the pace of desalination research. The US political class simply hasn’t been told whats going on in the US labs. Its not that the info isn’t available. Unlike a year ago,the implications of current research has pushed into corporate America. Two weeks ago I posted that IBM was entering into membrane research in the belief that great strides would be made in the next five years.

More to the point, as in the USA –the Australians considered pumping water over great distances and mountains and concluded that water desalination research was the better alternative. Consider this article.

Saltwater offers best hope, says scientist

Desalination and an inland pipeline are two of the options being considered by the State Government as it grapples with Melbourne’s water shortage.

Pumping water over the Great Dividing Range would probably be as energy intensive as desalination, he said, but the supply would be less reliable.

“We believe we can significantly reduce the amount of energy needed for desalination and this will make it even more competitive,” he said.

Its a shame sober men can’t come to the same conclusions in the USA.

No Comments

  1. […] was that their confidence that they could do so — came in part from American research. The announcement that they were going to appropriate 250 million for desalination research came four months after a […]

    Pingback by Hoover Dam « Desalination Research And Development — January 25, 2008 @ 4:36 pm

  2. […] australians looked at american research and decided it was worthwhile to invest 250 million over 7 years in water desalination research. […]

    Pingback by American Membrane Technology Association | Water Power R&D — February 22, 2010 @ 4:15 am

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.