Consider this Craig Ventor piece about the new treasure trove of bacteria dna/proteins brought in by Craig Venter’s Institute. Science critics are hailing his work as the biggest deal in ocean going genetics since the Beagle voyages of Charles Darwin.

How would this effect desalination research? It would be helpful if someone in the desalination community tasked the Craig Ventor Institute to keep an eye out for proteins/membranes that do desalination work.

Great. So you get some desalination proteins or membranes. How do you make them into something useful? There are two approaches to this.

In the first approach you find a gene that does desalination in bacteria and you insert it into some bacteria or a blue green algae that doubles in number every few hours and somehow harvest the fresh water from the bodies of the bugs. Something similar to this is currently being done to produce biodiesel.

imho this just looks like an expensive way to produce water in bulk. The better use for sea bacteria would be to find ones that do desalination really well and use them as the basis for mathematical models for materials research for second & third generation membranes that adapt to changes in salinity and chemistry in the water — so as to retain a consistent flow of fresh water through the membrane. Cells do this all the time. Likely too they’ve been doing it since nearly the dawn of time.

This suggests there are simple elegant solutions.

Ok, how would you convert organic membranes into inorganic membranes. Well I think that — after the Ventor institute found a desalination bug whose membranes they liked — then they’d pass it off to a geneticist, a materials research scientist and maybe a mathematician who would — between them –“characterize” the desalination process of membrane in a form that a computer modeler could use to “characterize” the same desalination process with a computer model simulation. With that model you could then ask the program what kind of materials alone or in combination would desalinate water like the membrane of the wee beastie. The program would run millions of simulations. (Hopefully there would be a learning curve in there somewhere–so that future simulations wouldn’t so many interations.)

I blogged in detail last year about current work at San Dia laboratories along these lines.

Then, once you have the material…do a little shake and bake.

If you wanted to accelerate the pace of research –then just increase the number of teams doing simulations on supercomputers around the country. How many? 10 seems like a nice round number. If people wanted to know why such work should be given priority….point to the half full dams in Arizona. This is lake Meade as of Oct 31, 2006. There hasn’t been much rain since then.

No Comments

  1. Good one, Charles. It won’t be long. Oh, they lowered the water level at Lake Mead as a counterterrorism method, I believe.

    Comment by Rufus — August 13, 2007 @ 4:26 am

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.