Recent Posts
- Peace Through Water Desalination
- CPAC Water Policy Interview with KLRN Radio San Antonio Texas
- CPAC Water Interview With California Talk Show Host Rick Trader
- Toward a Green Earth Policy in the era of Trump
- Gates Foundation Water Energy Vision
Recent Comments
- LLNL Researchers use carbon nanotubes for molecular transport on
- Greenhouses for Desalination on
- American Membrane Technology Association on
- Engineers develop revolutionary nanotech water desalination membrane on
- LLNL Researchers use carbon nanotubes for molecular transport on
Archives
- May 2017
- March 2017
- June 2011
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- April 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- July 2006
- June 2006
Categories
Making Biofuel from Pond Scum with Fresh Water Byproduct
16th March 2007
According to this CSRwire press release this week–“In-Flight Media has produced an impressive current-event documentary type two-minute video clip for GSPI. The video illustrates a solution to both solving the fuel crisis and global warming crisis simultaneously”–(if you believe in CO2 as the cause of global warming–which I don’t) . “Over 5-million people will view this video on Continental Airline flights during the months of April and May (2007). A preview of this video is presently available for viewing at” http://video.google.com/videoplay?docid=595872956429027619.
I have written several pieces on using desalinising greenhouses for dual use desalination and biodiesal
The article below fleshes out the algae-to-biodiesal angle pretty well. What the article doesn’t mention is that Greenfuels is now running second stage tests in Arizona using “greenhouse-like buildings about 30 feet wide by 500 feet long that will house the algae”. Future algae greenhouses could use Seawater Greenhouse desalination technology. This would be especially appropriate for areas in the southwest that have carbon dioxide producing plants sited above briny aquifers–or areas along the US coasts that use coal to produce electricity. As well, here is an article that says adding hydrogen to biomass — while its being turned into fuel — increases efficiencey significantly. The process is a “hybrid hydrogen-carbon process,” (H2CAR). According to this article the Hydrogen-Augmented Fischer-Tropsch Processes yields More Product, No CO2.
The new approach modifies conventional methods for producing liquid fuels from biomass by adding hydrogen from a “carbon-free” energy source, such as solar or nuclear power, during a step called gasification. Adding hydrogen during this step suppresses the formation of carbon dioxide and increases the efficiency of the process, making it possible to produce three times the volume of biofuels from the same quantity of biomass.
The picture looks like this:
That would increase the output of greenhouses turning algae to biodiesal significantly. (Same goes for thermal depolymerization.) Further, solar panels mentioned here will come onstream next fall at 1/10 current costs to convert sunlight to electricity for electrolysis to produce hydrogen for the process mentioned above.
While this talk is about fuel–it should be mentioned that the by product is… fresh water.
The article below mentions that they expect the algae to yield biodiesal for $50@ barrel. I think those numbers will fall.
January 26, 2007
Making Biofuel from Pond Scum
Oil-rich plants such as soy may offer a cleaner energy alternative to diesel fuel, but Jim Sears says these food crops can’t meet all our diesel needs. The Colorado-based entrepreneur says, even in America’s bountiful croplands, farmers couldn’t grow enough oilseed crops to meet demand.
“It is about 1,000 times more efficient to produce fuel from algae than it is from an irrigated crop. There’s enough water even in the desert from natural rainfall to support this technology.”
— Jim Sears, Solix Biofuels, Founder
“Right now,” [Sears] points out, “if we were to use all the normal sources we know about, such as canola oil, soy, things like this to make biodiesel, the industry thinks they could make 3.7 billion liters a year. That sounds like a lot, but Americans currently use 227 billion liters of diesel a year.”Fortunately, Sears says, an unconventional crop could produce 100 times more biodiesel per hectare than either canola or soy. It can thrive in places where other crops can’t grow at all, and it only requires the equivalent of 5 centimeters of rain a year. It’s algae, a small but familiar plant, usually seen as a green scum that forms on ponds or aquarium glass.
To demonstrate his crop’s potential, Sears leads the way inside a former coal-fired electric power plant, now the Engines and Energy Conversion Laboratory at Colorado State University (CSU). CSU and Sears’ small company, Solix Biofuels, have teamed up for this research.
Sears passes a two-story tall engine that may soon be running on his biodiesel, and heads to a quieter room where test batches of algae grow in glass beakers. The water ranges from pale yellow to soft Irish green, thanks to millions of microscopic algae.
Biologist Nick Rancis lifts a favorite specimen. “Here we have a species of green algae that grows in fresh water. As you can see, it grows very high density. You can’t even see through it when you hold it up to the light.” He says this strain produces enormous amounts of fat: up to 50 percent of its body weight. And while producing oil from soy or canola generally requires a three to five-month growing season, some algae are so prolific, over half a batch can be harvested for oil production every day. “They can double or triple overnight,” Rancis says.
For industrial production, the researchers are designing enormous growing troughs, wider than two trucks side by side, as long as a football field, and grouped by the thousands around processing plants. In this way, Sears says, algae could supply all the U.S. diesel power on a fraction of the nation’s farmland, just one percent of the 400 million hectares now under cultivation.
“Actually we wouldn’t have to convert any of our arable land,” [Sears] observes. “We could use desert land to grow this algae. It doesn’t require good soil. Just flat land, carbon dioxide and sunlight.”
Carbon dioxide helps algae grow fast and fat, so the team plans to siphon it from fossil fuel power plant exhaust, which will reduce greenhouse gas emissions. And Sears says there are other ways to get the gas. “It would actually start with biomass such as switch grass or wood, where in some countries are the only type of fuel that they have anyway. In that case, the grass, the trees, the wood is pulling the carbon dioxide out of the air, then we burn it as fuel and feed the carbon dioxide to the algae.”
He stresses that no carbon will be added to the atmosphere during all these energy conversion steps, making biofuel from algae is a truly carbon-neutral technology. “It’s essentially solar powered fuel.”
To conserve water, the growing troughs are sealed. The algae grows under a clear plastic lid that allows in plenty of sunlight, but keeps the water the plants are floating in from evaporating. “It is about 1,000 times more efficient to produce fuel from algae than it is from an irrigated crop,” Sears says. “There’s enough water even in the desert from natural rainfall to support this technology.”
Affordable biodiesel is an important focus of the research team, and Bryan Willson, who directs this Engines and Energy Conversion Lab, says the projections look promising. “We believe the technology could be cost competitive with $50 a barrel oil, which is basically where we are right now. Even last year, we were up to $70 a barrel.”
Because building a vast new production system is an enormous undertaking, Sears predicts that it will be five to ten years before biodiesel from algae becomes commonplace. However, Eric Jarvis, a senior scientist at the National Renewable Energy Lab, cautions that it may take longer. “I wouldn’t expect it to meet a large demand for diesel in that time frame, but I’m hoping to see some good demonstration projects in the next 5 to 10 years.” He adds that in the last two years, interest in developing systems for biodiesel from algae has grown tremendously, and he gets phone calls every week from people trying to get into this area.
Whether it takes five years, a decade or a little longer, Jim Sears says he’s certain that biodiesel from algae will become commonplace. He calls it “by far the most scalable and reasonable way to make biofuels in the future in an endlessly sustainable method.”
As he considers that future, a train whistle sounds in the distance. “That train is the train that used to bring the coal to this power plant,” he comments, adding “it is one of the future customers.”
The National Renewable Energy Lab plans to step up their development of biodiesel from algae within the year, and they estimates that along with Colorado State and Solix Biofuels, roughly a dozen other groups around the world are developing similar projects, increasing the likelihood that someday soon, clean-burning algae biodiesel will be the fuel of choice for trucks, boats . . . and trains.
No Comments
RSS feed for comments on this post.
Sorry, the comment form is closed at this time.
I used to think scum was such a terrible thing. Now I think the world needs more scum.
Comment by criticaldemocracy — May 4, 2008 @ 9:09 pm
[…] May Be Best Biofuel Energy Source Making Biofuel from Pond Scum with Fresh Water Byproduct Aviation bioFuel : Algae-Oil in West Texas (more on this autogenerated links feature in my next […]
Pingback by Time magazine- Isaac Berzin and algae biofuels « We Can Change The World — May 5, 2008 @ 2:13 am
[…] to pump the coal plant’s waste CO2 into algae geenhouses. I’ve mentioned this in posts here & […]
Pingback by Sen. Ken Salazar DOI Steven Chu DOE « Desalination Research And Development — December 18, 2008 @ 1:40 pm