Recent Posts
- Peace Through Water Desalination
- CPAC Water Policy Interview with KLRN Radio San Antonio Texas
- CPAC Water Interview With California Talk Show Host Rick Trader
- Toward a Green Earth Policy in the era of Trump
- Gates Foundation Water Energy Vision
Recent Comments
- LLNL Researchers use carbon nanotubes for molecular transport on
- Greenhouses for Desalination on
- American Membrane Technology Association on
- Engineers develop revolutionary nanotech water desalination membrane on
- LLNL Researchers use carbon nanotubes for molecular transport on
Archives
- May 2017
- March 2017
- June 2011
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- April 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- July 2006
- June 2006
Categories
Smart thin film membranes adopt properties of guest molecules
30th March 2007
Consider this Craig Ventor piece about the new treasure trove of bacteria dna/proteins brought in by Craig Venter’s Institute. Science critics are hailing his work as the biggest deal in ocean going genetics since the Beagle voyages of Charles Darwin.
How would this effect desalination research. It would be helpful if someone in the desalination community tasked the Craig Ventor Institute to keep an eye out for proteins that do desalination work.
Great. So you get some desalination proteins. How do you make them into something useful?
Remember Ventor as you read the article below.
Public release date: 28-Mar-2007
Contact: Susan Trulove
STrulove@vt.edu
540-231-5646
Virginia Tech
http://www.eurekalert.org/pub_releases/2007-03/vt-stf031907.php
Smart thin film membranes adopt properties of guest molecules
Blacksburg, Va., March 28, 2007 — Virginia Tech researchers announced last year that they had created a nanostructured membrane that incorporates DNA base pairs in order to impart molecular recognition and binding ability to the synthetic material. This year they will show for the first time that these new films, membranes, and elastomers are compatible with diverse organic and inorganic molecules and will adopt properties of the guest molecules.
The research is being presented as an invited talk at the 233rd national meeting of the American Chemical Society in Chicago March 25-29.
Chemistry professor Tim Long’s research group, students affiliated with the Macromolecule and Interfaces Institute (MII) at Virginia Tech, and the U.S. Army Research Laboratory created a block copolymer, where different monomers are linked in a sequential manner and form a nanostructured film. They used adenine and thymine nucleotides, two of the four DNA base pairs that recognize each other. Then the researchers experimented with different kinds of guest molecules with complementary hydrogen bonding sites (hydrogen has a low energy attraction to many types of atoms).
The low energy attraction, means the guest molecules are widely dispersed throughout the membrane, which then takes on the properties of the guest molecules. “For example,” said Long, “if the guest molecules have ionic sites (sites with positive and negative charges), you will be able to transfer water through a film because you would have ion channels at the nanoscale. It’s similar to the way a cell membrane works to control the flow of specific ions into a cell. You can create protective clothing – against chemicals – that would still allow water vapor through.”
Salts, as ordinary table salt, are hydrophilic (water loving) and their introduction into a block copolymer template permits the placement of the salts at the nanometer dimension. One can imagine forming of channels of salts that are not visible with the human eye, but act as a roadway for the transport of water molecules.
“The research is synergy at the nanotechnology-biotechnology interface,” Long said.
###
The talk, “Nucleobase-containing triblock copolymers as templates for the dispersion of guest molecules at the nanoscale” (PMSE 423) will be presented at 9:05 a.m. Wednesday, March 28, in McCormick Place South room S505A. Authors are Brian Mather of Albuquerque, a chemical engineering doctoral student in MII; Margaux B. Baker, an undergraduate student from the University of Michigan who studied with Long’s group during summer 2006; Long, and Frederick L. Beyer of the U.S. Army Research Laboratory.
Mather received his undergraduate degree from the University of New Mexico. Learn more about his research at Virginia Tech by visiting www.chem.vt.edu/chem-dept/tlong/Brian.html.
[ Print Article | E-mail Article | Close Window ]
No Comments
No comments yet.
RSS feed for comments on this post.
Sorry, the comment form is closed at this time.