According to this article:

The Texas Water Development Board awarded San Antonio Water System a $205,000 grant to test a particular technology to turn brackish groundwater into high-quality drinking water.

SAWS will work with the Evergreen Underground Water District to churn highly salinated water into a potable water source for the region.

The research study will determine the feasibility and costs of Vibratory Shear Enhanced Processing technology at SAWS’ proposed desalination plant.

SAWS is an add on for membrane technology that prevents fouling. So one thing for membrane researchers out there to consider is that there are transitional ways around fouling like SAWS such that anti fouling need not be accomplished by the membrane itself. Below is the details for how SAWS works. (Come to think of it between SAWS and charge all you need from a membrane is flux.)

Products & ServicesVibratory Shear Enhanced Processing VSEP

[Technology] [System Operation] [System Components] [Applications] [Models] [Download]

While membrane-based separations of liquids from solids have enjoyed increasing popularity over the last 20 years, the technology has an inherent Achilles heel that affects all membrane devices: fouling. This long-term loss in throughput capacity is due primarily to the formation of a boundary layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams.


To help minimize this boundary layer buildup, membrane designers have used a method known as tangential-flow or cross-flow filtration that relies on high velocity fluid flow pumped across the membranes surface as a means of reducing the boundary layer effect. (See Figure 1)

In cross-flow designs, it is not economic to create high shear forces, thus limiting the use of cross-flow to low-viscosity (watery) fluids. In addition, increased cross-flow velocities result in a significant pressure drop from the inlet (high pressure) to the outlet (lower pressure) end of the device, which leads to premature fouling of the membrane that creeps up the device until permeate rates drop to unacceptably low levels.

(Figure 2)

Instead of producing high cross flow, an alternative method for producing intense shear waves on the face of a membrane is developed. The technique is called Vibratory Shear Enhanced Processing (VSEP). In a VSEP System, the feed slurry remains nearly stationary, moving in a leisurely, meandering flow between parallel membrane leaf elements. Shear cleaning action is created by vigorously vibrating the leaf elements in a direction tangent to the faces of the membranes.

The shear waves produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 and 10 times the throughput of conventional cross-flow systems. (See Figure 2, above)

The oscillation produces a shear at the membrane surface of about 150,000 inverse seconds (equivalent to over 200 G’s of force), which is approximately 10 times the shear rate of the best conventional cross-flow systems. More importantly, the shear in a VSEP System is focused at the membrane surface where it is cost effective and most useful in preventing fouling, while the bulk fluid between the membrane disks moves very little.

Because VSEP does not depend on feed flow induced shearing forces, the feed slurry can become extremely viscous and still be successfully dewatered. The concentrate is essentially extruded between the vibrating disc elements and exits the machine once it reaches the desired concentration level. Thus, VSEP Systems can be run in a single pass through the system, eliminating the need for costly working tanks, ancillary equipment and associated valving.

The disc pack hold up volume of a system with 1,400 ft2 (130 sq. meters) of membrane area, is less than 50 gallons (189 liters). As a result, product recovery in batch processes can be extremely high.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.