Recent Posts
- Peace Through Water Desalination
- CPAC Water Policy Interview with KLRN Radio San Antonio Texas
- CPAC Water Interview With California Talk Show Host Rick Trader
- Toward a Green Earth Policy in the era of Trump
- Gates Foundation Water Energy Vision
Recent Comments
- LLNL Researchers use carbon nanotubes for molecular transport on
- Greenhouses for Desalination on
- American Membrane Technology Association on
- Engineers develop revolutionary nanotech water desalination membrane on
- LLNL Researchers use carbon nanotubes for molecular transport on
Archives
- May 2017
- March 2017
- June 2011
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- April 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- July 2006
- June 2006
Categories
Adapting RO Plants for New Membranes
16th August 2008
John Walp, commissioning manager of the Brackish Groundwater National Desalination Research Facility in Alamogordo, talked to Chamber of Commerce Water Committee members Monday [8/11/08] about new technologies.
The article mentions something about the speed and direction of membrane evolution.
Technological development and innovation are also taking place in membranes used to filter water in reverse osmosis. Large diameter membranes have been found to reduce capital costs. Also, pre-filtration technology development is gaining momentum because it extends the life of expensive membranes.
“If you want to keep replacing membranes, then let raw water through,” Walp said. “If you want expensive membranes to last, you have to treat the water first.”
Pump and energy recovery development is taking place to improve efficiency and reduce energy consumption, Walp said.
In short, the cost of reverse osmosis technology is going down with an influx of new innovation, Walp said.
Today the average cost of water processed by reverse osmosis is $2.27 to $3.03 a gallon. Within five years the cost will be closer to $1.89 a gallon and within 20 years, the cost will drop to and average of 50 cents a gallon
As I’ve mentioned before–I think costs will drop faster. But there will be intermediate steps. These intermediate steps, however, promise to cause quite a headache for planners.
“The California Coastal Commission has cast an historic vote to approve Poseidon Resources’ Carlsbad Desalination Project….The project is on schedule to begin construction the first half of 2009 and delivering drinking water in 2011. ”
Great. That plant may incorporate the latest RO pump developed by Energy Recovery Inc.
But its only great luck that the pump comes along at the same time as the plant is in its planning stages.
What happens when an RO technology comes along that goes against the latest engineering model. Notice above that pretreatment is getting more traction as a way to extend the life of membranes?
Likely, Poseiden’s new Carlesbad project will adopt some kind of pretreatment. A popular pretreatment is to chlorinate water before its passed through the membrane. The chlorine kills the wee beasties & algae that foul membranes. But then the chlorine is also removed–before it passes throught the membrane — because chlorine also tends to degrade membranes faster.
Doesn’t that look like a complicated cad.
What happens if you get a membrane that requires plant design changes.
Well, as it happens, a new chlorine tolerant membrane from the University of Texas at Austin has been developed. However, its not clear as to whether this is an improvement on the membrane designed by UCLA’s Eric Hoek announced two years ago. The chlorine tolerant membrane would cut step two out of the process. But Eric’s membrane might cut steps one and two out of the process. The chlorine membrane is not ready for prime time–nor has any date been set for it to go into commercial production. Eric Hoek’s membrane is further along. It is slated for commercial production in late 2009/early2010.
As of now Poseiden can’t cad either into current engineering specs.
But since the new membranes cut out a step or two of pretreatment — there should be a way to write this into the specs for the plant. Likely Poseiden has the tools for this. I would suggest two. I mentioned both here a couple years back. The first by Autodesk “enables customers to create designs based on the functional requirements of a product before they commit to complex model geometry, allowing designers to put function before form.” The second tool developed by MIT would enable you to cost out retooling the Poseiden plant for a new membrane. According to the article I posted here back in 2006 “The model allows companies and organizations to develop more accurate bid proposals, thereby eliminating excess “cost overrun” padding that is often built into these proposals.”
Of course the sort of plant design changes caused by teams at UT Austin and UCLA will pale in comparison to the LLNL membranes–but that’s for another year.