The Washington Post has an interesting article on new sources of energy coming on stream. Among them is a buoy system. As you read the article below consider Pete Dominici’s line about how you need water for to produce energy and you need energy to produce water. For example, you might use an installed buoy system to pump water ashore. I would wonder however if it wouldn’t be cheaper to drill a pipe like an oil derrick — drilling from shore first down and then laterally sloping up so water flowed downward toward shore. Then you might devise a pipe that got slightly smaller as it came to shore to increase the pressure of the water. There might be as well some way to corrugate the inner walls of the pipe with a pattern of hydrophobic and hydrophilic material such that water would be “encouraged” to flow in a particular direction. Finally, the pipe might come up out of the sea floor 200+ feet off the bottom and end in a mushroom shape. Seven years from now the membrane would be so good it would pass only fresh water through on the underside of the underwater mushroom at ocean pressure without fouling. So the force of the water falling down the stem of the mushroom and then the slope, slimming and hydrophobic/hydrophillic pattern of the pipe moving water toward shore would generate enough pressure to bring the water to the surface on shore under pressure.

In short you wouldn’t need the expensive buoy system to pump water ashore. The water would go passively–perhaps requiring less maintenance. That said, here’s the article and some cool graphics.

Beyond Wind and Solar, a New Generation of Clean Energy

By Juliet Eilperin

Washington Post Staff Writer
(Article Link Here) Saturday, September 1, 2007; A01 (Graphics Link Here)

SOURCE: Finavera | GRAPHIC: By Seth Hamblin and Todd Lindeman, The Washington Post – September 01, 2007

PORTLAND, Ore. — Oregon Iron Works has the feel of a World War II-era shipyard, with sparks flying from welders’ torches and massive hydraulic presses flattening large sheets of metal. But this factory floor represents the cutting edge of American renewable-energy technology.

The plant is assembling a test buoy for Finavera Renewables, a Canadian company that hopes to harness ocean waves off the coast of Oregon to produce electricity for U.S. consumers. And Finavera is not Iron Works’ only alternative-energy client: So many companies have approached it with ideas that it has created a “renewable-energy projects manager” to oversee them.

“In the last year, it’s just exploded with ideas out there,” said Vice President Chandra Brown. “We like to build these creative new things.”

As policymakers promote alternative energy sources to reduce the United States’ emissions of greenhouse gases and its dependence on foreign oil, entrepreneurs are becoming increasingly inventive about finding novel ways to power the economy.

Beyond solar power and wind, which is America’s most developed renewable-energy sector, a host of companies are exploring a variety of more obscure technologies. Researchers are trying to come up with ways to turn algae into diesel fuel. In landfills, startups are attempting to wring energy out of waste such as leaves, tires and “car fluff” from junked automobiles.

This push for lesser-known renewables — which also includes geothermal, solar thermal and tidal energy — may someday help ease the country’s transition to a society less reliant on carbon-based fuels. But many of these technologies are in their infancy, and it remains to be seen whether they can move to the marketplace and come close to meeting the country’s total energy needs.

Some technologies are more advanced, though still small in the nation’s overall energy mix. Nevada boasts 15 geothermal plants, with the capacity to generate enough electricity for 73,000 homes. California utilities are looking at solar technology that would use mirrors to heat water and spin turbines in desert power plants.

Rep. Jay Inslee (D-Wash.), whose Bainbridge Island home overlooks Puget Sound, said that after being thrashed around by the ocean as he kayaked near his house, he became convinced that efforts such as Finavera’s could succeed.

“There’s just such an enormous power out there,” Inslee said, noting that there is nearly 900 times as much energy in a cubic meter of moving water as in a cubic meter of air. “I was wondering how we could capture that.”

Finavera’s chief executive, Jason Bak, believes he knows how. The equipment his company designed, called AquaBuOY, aims to generate electricity from the vertical motion of waves. The buoy, anchored in an array two to three miles offshore, will convert the waves’ motion into pressurized water using large, reinforced-rubber hose pumps. As the buoy goes up the peak of a wave and down into its trough, it forces a piston in the bottom of the buoy to stretch and contract the hose pumps, pushing water through. This drives a turbine that powers a generator producing electricity, which would be shipped to shore through an undersea transmission line.

“This is the new source of power,” Bak said. “It’s the highest-energy-density renewable out there. Wind is like light crude oil, and water is like gasoline.”

In many cases, Americans are working with overseas experts who have more experience developing renewable energy. This month, Iceland America Energy — a partnership between Icelandic and U.S. entrepreneurs — will start drilling just west of California’s Salton Sea to build a geothermal power plant to supply Pacific Gas and Electric with 49 megawatts of electricity by 2010.

Magn?s J?hannesson, Iceland America’s chief executive, said the facility will pump naturally heated water from underground, run it through turbines to generate electricity and re-inject it into the earth, “making it a renewable, giant battery that can run for 20, 30, 50 years.”

Iceland America has several other U.S. geothermal projects in the works, including a potential second Salton Sea plant that would serve Los Angeles and a home-heating plant for the ski resort town of Mammoth Lakes, Calif.

“There’s huge potential for geothermal energy in this country, especially on the West Coast,” J?hannesson said.

It is hard to predict what portion of the country’s needs could be met by these emerging technologies. The United States is already the world’s largest producer of geothermal electricity, with 212 plants generating 3,119 megawatts. A panel convened by the Massachusetts Institute of Technology concluded in a recent report that by 2050, geothermal plants could produce 100 gigawatts, which would be equivalent to 10 percent of current U.S. electricity capacity.

“That level would make it comparable to the current capacity of all our nuclear power plants or all our hydroelectric plants,” wrote the panel’s chair, MIT chemical engineering professor Jefferson W. Tester, in an e-mail.

A 2005 report by the Electric Power Research Institute, an industry consortium, said there is “significant” wave energy potential along America’s coasts, predicting that it, too, could eventually generate as much electricity as the entire hydropower sector.

Both the Bush administration and Congress are promoting renewable energy through a mix of federal largesse and mandates.

Last month the House passed, as part of its energy bill, a requirement that by 2020, renewable energy must account for at least 15 percent of private utilities’ energy supply, and authorized $50 million for marine energy research over the next five years.

Over the next two years, the Energy Department will offer up to $13 billion in loan guarantees for energy ventures that “avoid, reduce or sequester air pollutants and greenhouse gases,” said department spokeswoman Julie Ruggiero, “to make new and emerging clean-energy technologies cost-competitive with traditional sources of energy.”

Still, it will be years before many of these projects will come on line. Oregon Iron Works is nearly done constructing the AquaBuOY prototype, which will be 72 feet tall and 12 feet in diameter, and Finavera hopes to install it off the Oregon coast as early as next week. After testing the technology and applying for the necessary federal permits, Finavera officials hope that by 2010 or 2011 they can operate two wave parks — one off Bandon, Ore., and another off Trinidad, Calif. — that would each span two to three square miles and produce 100 megawatts, enough for 35,000 homes. They plan to start up another wave-power operation in British Columbia around the same time.

Operating equipment in the hostile environment of the ocean poses challenges, however. Josh Pruzek, who oversees government contracts as military marine manager at Oregon Iron Works, said the company uses high-grade steel that is less vulnerable to corrosion, and designs parts to be easily maintained.

The power of moving water can also overwhelm high-tech equipment. In December, Verdant Power placed turbines off New York City‘s Roosevelt Island amid much fanfare, promising to harness the tides of the East River and convert that energy into electricity. By last month, all six of the turbines, battered by the current’s strength, had been shut down. The company is repairing and redesigning its equipment.

Still, such projects are popular with politicians across the nation, from New York Mayor Michael R. Bloomberg (I) to Oregon Gov. Ted Kulongoski (D), who is hoping to make his state a breeding ground for renewable-energy projects. David Van’t Hof, Kulongoski’s sustainability policy adviser, said government officials are exploring ideas, from solar projects on the eastern side of the state to biomass energy culled from Oregon’s forests, in an effort to generate 25 percent of the state’s energy from renewable sources by 2025.

“Wind’s going to continue to be the king, both in Oregon and the nation, for the next five years,” Van’t Hof said, but that will last only for so long. “People are already asking, ‘What’s next after wind?’ ”

Staff writer Steven Mufson in Washington contributed to this report.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.