Back in June, San Dia Labs anounced that they’ll have a new desalination R&D roadmap. The press release is below. The roadmap isn’t out yet. So I’ll throw in my 2 cents on the matter.

The short of it is that imho the roadmap should announce that the goal of desalination R&D over the next 10 years is to make the cost of water desalination 1/10 of what it is today. The R&D roadmap should say that the US government is interested in laying the groundwork for making it economically possible to turn America’s deserts–and the world’s deserts–green and thereby make it economically feasible to increase the habitable size of the USA by 1/3 and double the size of the habitable earth.

Pretty ambitious? Not really. A drop in the cost of water desalination by a factor of -+10 in 10 years is baked into the research tools and methodologies available today. However, I think that the accelerating speed of computers will actually enable researchers to drop the cost of water desalination by a factor of +-10 in six years.

The situation today is analogous to the Human Genome Project initially proposed by the DOE in 1986 and launched in 1990 under both the DOE and the NIH. The goal was to complete the project in 15 years. The first rough draft was completed in 10 years. I think the desalination roadmap should aim for 10 years rather than 15 years because the power of the tools and the quality of the methodologies are many orders of magnitude higher than they were in 1990.

Senator Pete Domenici played an early role in this project. The vision of the founders was breath taking even when their technology was relatively primitive. The reason they could say “The ultimate goal of this initiative is to understand the human genome” was not just because there was a need to understand the human genome but also because they had the tools and methodology to get there. Same is true today for water desalination.

In 1998 a parallel project was launched by Craig Ventor and Celera Genomics. Competition from the private research group accelerated the pace of development.
A more detailed parallel history of the private Ventor and public DOE/NIH Human Genome Project is recounted below. The essential takeaway should be that the government provided the vision and leadership and Ventor et al provided the oomph. That said, the history is instructive:

Human Genome Project

History and ongoing developments

The Project was launched in 1986 by Charles DeLisi, who was then Director of the US Department of Energy’s Health and Environmental Research Programs (DeLisi later was awarded the Citizen’s medal by President Clinton for his seminal role in the Project). The goals and general strategy of the Project were outlined in a two-page memo to the Assistant Secretary in April 1986, which helped garner support from the DOE, the United States Office of Management and Budget (OMB) and the United States Congress, especially Senator Pete Domenici. A series of Scientific Advisory meetings, and complex negotiations with senior Federal officials resulted in a line item for the Project in the 1987 Presidential budget submission to the Congress.

Initiation of the Project was the culmination of several years of work supported by the US Department of Energy, in particular a feasibility workshop in 1986 and a subsequent detailed description of the Human Genome Initiative in a report that led to the formal sanctioning of the initiative by the Department of Energy.[1] This 1987 report stated boldly, “The ultimate goal of this initiative is to understand the human genome” and “Knowledge of the human genome is as necessary to the continuing progress of medicine and other health sciences as knowledge of human anatomy has been for the present state of medicine.” Candidate technologies were already being considered for the proposed undertaking at least as early as 1985.[2]

James D. Watson was Head of the National Center for Human Genome Research at the National Institutes of Health (NIH) in the United States starting from 1988. Largely due to his disagreement with his boss, Bernadine Healy, over the issue of patenting genes, he was forced to resign in 1992. He was replaced by Francis Collins in April 1993 and the name of the Center was changed to the National Human Genome Research Institute (NHGRI) in 1997.

The $3-billion project was formally founded in 1990 by the United States Department of Energy and the U.S. National Institutes of Health, and was expected to take 15 years. In addition to the United States, the international consortium comprised geneticists in China, France, Germany, Japan, and the United Kingdom.

Due to widespread international cooperation and advances in the field of genomics (especially in sequence analysis), as well as huge advances in computing technology, a ‘rough draft’ of the genome was finished in 2000 (announced jointly by then US president Bill Clinton and British Prime Minister Tony Blair on June 26, 2000).[3] Ongoing sequencing led to the announcement of the essentially complete genome in April 2003, two years earlier than planned.[4] In May 2006, another milestone was passed on the way to completion of the project, when the sequence of the last chromosome was published in the journal Nature.[5]

While most of the sequencing of the first human genome is “complete” the project to understand the functions of all the genes and their regulation is far from completion. The roles of junk DNA, the evolution of the genome, the differences between individuals and races, and many other questions are still the subject of intense study by laboratories all over the world.

The role of Celera Genomics

In 1998, an identical, privately funded quest was launched by the American researcher Craig Venter and his firm Celera Genomics. The $300 million Celera effort was intended to proceed at a faster pace and at a fraction of the cost of the roughly $3 billion taxpayer-funded project.

Celera used a newer, riskier technique called whole genome shotgun sequencing, which had been used to sequence bacterial genomes.

Celera initially announced that it would seek patent protection on “only 200-300” genes, but later amended this to seeking “intellectual property protection” on “fully-characterized important structures” amounting to 100-300 targets. Contrary to its public promises, the firm eventually filed patent applications on 6,500 whole or partial genes.

Celera also promised to publish their findings in accordance with the terms of the 1996 “Bermuda Statement,” by releasing new data quarterly (the HGP released its new data daily), although, unlike the publicly-funded project, they would not permit free redistribution or commercial use of the data.

In March 2000, President Clinton announced that the genome sequence could not be patented, and should be made freely available to all researchers. The statement sent Celera’s stock plummeting and dragged down the biotech-heavy Nasdaq. The biotech sector lost about $50 billion in market capitalization in two days.

Although the working draft was announced in June 2000, it was not until February 2001 that Celera and the HGP scientists published details of their drafts. Special issues of Nature (which published the publicly-funded project’s scientific paper) and Science (which published Celera’s paper) described the methods used to produce the draft sequence and offered analysis of the sequence. These drafts are hoped to comprise a ‘scaffold’ of 90% of the genome, with gaps to be filled later.

The competition proved to be very good for the project. The rivals agreed to pool their data, but the agreement fell apart when Celera refused to deposit its data in the unrestricted public database GenBank. Celera had incorporated the public data into their genome, but forbade the public effort to use Celera data.

On 14 April 2003, a joint press release announced that the project had been completed by both groups, with 99% of the genome sequenced with 99.99% accuracy.


And the rest is history:

To reiterate, imho the Desalination and Water Purification Roadmap — “Roadmap 2” should provide the same of government vision and leadership as was provided by the government in the Human Genome Project.

Below is the San Dia PR as published in EurekAlert.
Contact: Chris Burroughs
DOE/Sandia National Laboratories

Desalination roadmap seeks technological solutions to increase the nation’s water supply

Sandia researchers ready to complete research roadmap

ALBUQUERQUE, N.M. — After one last meeting in San Antonio in April, Sandia National Laboratories researchers Pat Brady and Tom Hinkebein are putting the final touches on the updated Desalination and Water Purification Roadmap — “Roadmap 2” — that should result in more fresh water in parts of the world where potable water is scarce.The updated roadmap is the result of three previous meetings — two in San Diego and one in Tampa — and the last held in April where many government agency, national laboratory, university and private partners gathered to map out the future of desalination in the U.S. The first roadmap identified overall goals and areas of desalination research and was submitted to Congress in 2003.

Brady expects the second roadmap to be completed shortly, and the Joint Water Reuse and Desalination Task Force will then submit it to Sen. Pete Domenici, R-N.M., chairman of the Senate Energy and Water Development Appropriations Subcommittee, Congress and eventually the water user and research communities. The task force consists of the Bureau of Reclamation, the WaterReuse Foundation, the American Water Works Association Research Foundation and Sandia.

The roadmap will recommend specific areas of potential water desalination research and development that may lead to technological solutions to water shortage problems.

“Population growth in the U.S. is expected to increase 13.6 percent per decade [over the next two decades],” says Hinkebein, manager of Sandia’s Geochemistry Department and head of Sandia’s Advanced Concepts Desalination Group. “There will be 29 percent more of us in 20 years. Put that together with an unequal distribution of people — more moving to Texas, California, Arizona and New Mexico where fresh water is limited — and it is easy to see we are facing a challenging water future.”

Sandia is a National Nuclear Security Administration laboratory.

Only 0.5 percent of Earth’s water is directly suitable for human consumption. The rest is composed of saltwater or locked up in glaciers and icecaps. As the world’s population grows, the increased water demand will have to come from someplace. Brackish water seems to be a natural source, Hinkebein says.

Roadmap 2 will outline the specific research needed in high-impact areas to create more fresh water from currently undrinkable brackish water, from seawater, and from wastewater. It will ensure that different organizations are not duplicating research.

Water desalination is not a new concept. In the U.S., the largest plants are in El Paso and Tampa. It is also commonplace in other parts of the world. Except for the Middle East, most desalination is done through reverse osmosis.

Brady says 43 research areas have been tentatively identified and some projects are already under way, jump started with $2 million made available for the preliminary research through a matching grant from the California Department of Water Resources. California provided $1 million and members of the Joint Water Reuse and Desalination Task Force each contributed $250,000.

Another $4 million in fiscal years 2004, 2005 and 2006 through federal Energy and Water Development Appropriations bills secured by Domenici has also funded desalination research at Sandia.

“The task force will decide which of the 43 projects get to the top of the research pile,” Brady says. “As more money is made available, universities, research groups, national laboratories and private companies will bid on projects.”

The 43 research areas in Roadmap 2 include the following:

  • Membrane technologies (mainly reverse osmosis) that desalinate and purify water by pushing it through a semipermeable membrane that removes contaminants.
  • Alternative technologies that take advantage of nontraditional methods.
  • Concentrate management technologies that consider the disposal and/or beneficial use of desalination waste streams.
  • Reuse/recycling technologies that look at ways membrane and alternative technologies can be used to more efficiently recycle water.

Much of the research could be conducted at the soon-to-be-completed Tularosa Basin National Desalination Research Facility in Alamogordo.

No Comments

  1. […] to mention to them that basic research suggests that the cost of water desalination & transport will collapse in the next 5 to 10 […]

    Pingback by Desalination VS Water Transfers « Desalination Research And Development — April 26, 2007 @ 4:52 pm

  2. […] Notice the reference to the Manhattan project and the Moon Shot. I’ve characterized the water desalination research project as being on the scale of the human genome project inĀ  the 1990s […]

    Pingback by Hoover Dam « Desalination Research And Development — January 26, 2008 @ 7:51 pm

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.