Recent Posts
- Peace Through Water Desalination
- CPAC Water Policy Interview with KLRN Radio San Antonio Texas
- CPAC Water Interview With California Talk Show Host Rick Trader
- Toward a Green Earth Policy in the era of Trump
- Gates Foundation Water Energy Vision
Recent Comments
- LLNL Researchers use carbon nanotubes for molecular transport on
- Greenhouses for Desalination on
- American Membrane Technology Association on
- Engineers develop revolutionary nanotech water desalination membrane on
- LLNL Researchers use carbon nanotubes for molecular transport on
Archives
- May 2017
- March 2017
- June 2011
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- April 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- July 2006
- June 2006
Categories
Mimicing Kidneys to Produce Desalination Membranes
04th December 2007
University of Illinois scientists Manish Kumar & Mark Clark have developed semipermeable membranes that mimic the actions of kidney to produce salt rejecting membranes with 10 times the salt rejecting power of current generation membranes. The next challenge —as with carbon nanotubes –is to scale up production.
Better Membranes For Water Treatment, Drug Delivery Developed
Mark Clark, a professor of civil and environmental engineering, and colleagues have developed a new generation of biomimetic membranes for water treatment and drug delivery. (Credit: Image courtesy of University of Illinois at Urbana-Champaign)
ScienceDaily (Nov. 29, 2007) — Researchers at the University of Illinois have developed a new generation of biomimetic membranes for water treatment and drug delivery. The highly permeable and selective membranes are based on the incorporation of the functional water channel protein Aquaporin Z into a novel A-B-A triblock copolymer.
The experimental membranes, currently in the form of vesicles, show significantly higher water transport than existing reverse-osmosis membranes used in water purification and desalination.
“We took a close look at how kidneys so efficiently transport water through a membrane with aquaporins, and then we found a way to duplicate that in a synthetic system,” said Manish Kumar, a graduate research assistant at the U. of I., and the paper’s lead author.
Unlike most biological membranes, polymer membranes are very stable and can withstand considerable pressure — essential requirements for water purification and desalination processes. “Placing aquaporins in materials that we can use outside the body opens doors to industrial and municipal applications,” Kumar said.
To make their protein-polymer membranes, the researchers begin with a polymer that self-assembles into hollow spheres called vesicles. While the polymer is assembling, the researchers add Aquaporin Z — a protein found in Escherichia coli bacteria.
“Aquaporin Z makes a hole in the membrane that only water can go through, so it’s both fast and selective,” said membrane specialist Mark Clark, a professor of civil and environmental engineering and one of the paper’s co-authors.
“By varying the amount of Aquaporin Z, we can vary the membrane’s permeability,” Kumar said, “which could be very useful for drug-delivery applications.”
With their high permeability and high selectivity, the biomimetic membranes also are ideal for water treatment by desalination, which is becoming increasingly important for water purification in semiarid coastal regions.
When tested, the productivity of the Aquaporin Z-incorporated polymer membranes was more than 10 times greater than other salt-rejecting polymeric membranes.
Currently, the experimental polymer membranes exist only as small vesicles. “Our next step is to convert the vesicles into larger, more practical membranes,” Kumar said. “We also want to optimize the membranes for maximum permeability.”
The researchers describe their membranes in detail in a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be published in PNAS Online Early Edition.
In addition to Clark and Kumar, co-authors of the paper are research professor Julie Zilles at the U. of I., and chemistry professor Wolfgang Meier and doctoral student Mariusz Grzelakowski, both at the University of Basel in Switzerland.
Funding was provided by the Swiss National Center of Competence in Nanoscale Science, the Swiss National Science Foundation and the University of Illinois.
Adapted from materials provided by University of Illinois at Urbana-Champaign.
No Comments
No comments yet.
RSS feed for comments on this post.
Sorry, the comment form is closed at this time.